Inicio » Creación de la vida teoría del hierro-sulfuro

Creación de la vida teoría del hierro-sulfuro

Otra posible respuesta a este misterio de la polimerización fue propuesta por Günter Wächtershäuser en 1980, en su teoría del hierro-sulfuro. En esta teoría, postuló la evolución de las rutas (bio) químicas como el fundamento de la evolución de la vida. Incluso presentó un sistema consistente para rastrear las huellas de la actual bioquímica desde las reacciones ancestrales que proporcionaban rutas alternativas para la síntesis de “ladrillos orgánicos” a partir de componentes gaseosos simples.
Al contrario que los experimentos clásicos de Miller, que dependían de fuentes externas de energía (como relámpagos simulados o irradiación UV), los “sistemas de Wächstershäuser” vienen con una fuente de energía incorporada, los sulfuros de hierro y otros minerales (por ejemplo la pirita). La energía liberada a partir de las reacciones redox de esos sulfuros metálicos, no sólo estaba disponible para la síntesis de moléculas orgánicas, sino también para la formación de oligómeros y polímeros. Se lanza por ello la hipótesis de que tales sistemas podrían ser capaces de evolucionar hasta formar conjuntos autocatalíticos de entidades autorreplicantes metabólicamente activas que serían los precursores de las actuales formas de vida.

El experimento tal y como fue llevado a cabo rindió una producción relativamente pequeña de dipéptidos (del 0,4% al 12,5 %) y una producción inferior de tripéptidos (0,003%) y los autores advirtieron que: “bajo estas mismas condiciones los dipéptidos se hidrolizaban rápidamente.” Otra crítica del resultado es que el experimento no incluía ninguna organomolécula que pudiera con mayor probabilidad dar reacciones cruzadas o terminar la cadena (Huber y Wächsterhäuser, 1998).
La última modificación de la hipótesis del hierro-sulfuro fue propuesta por William Martin y Michael Russell en 2002. De acuerdo con su escenario, las primeras formas celulares de vida pudieron haber evolucionado dentro de las llamadas “chimeneas negras” en las profundidades donde se encuentran las zonas de expansión del fondo oceánico. Estas estructuras consisten en cavernas a microescala que están revestidas por delgadas paredes membranosas de sulfuros metálicos. Por tanto, estas estructuras resolverían varios puntos críticos de los sistemas “puramente” de Wächstershäuser de una sola vez:

1. Las microcavernas proporcionan medios para concentrar las moléculas recién sintetizadas, por tanto aumentando la posibilidad de formar oligómeros.
2. Los abruptos gradientes de temperatura que se encuentran dentro de una chimenea negra permiten establecer “zonas óptimas” de reacciones parciales en diferentes regiones de la misma (por ejemplo la síntesis de monómeros en las zonas más calientes, y la oligomerización zonas más frías).
3. El flujo de agua hidrotermal a través de la estructura proporciona una fuente constante de “ladrillos” y energía (sulfuros metálicos recién precipitados).
4. El modelo permite una sucesión de diferentes pasos de evolución celular (química prebiótica, síntesis de monómeros y oligómeros, síntesis de péptidos y proteínas, mundo de ARN, ensamblaje de ribonucleoproteínas y mundo de ADN) en una única estructura, facilitando el intercambio entre todos los estadios de desarrollo.
5. La síntesis de lípidos como medio de “aislar” las células del medio ambiente no es necesaria hasta que básicamente estén todas las funciones celulares desarrolladas.

Este modelo sitúa al “último antepasado común universal” (LUCA, del inglés Last Universal Common Ancestor) dentro de una chimenea negra, en lugar de asumir la existencia de una forma de vida libre de LUCA. El último paso evolutivo sería la síntesis de una membrana lipídica que finalmente permitiera al organismo abandonar el sistema en el interior de la microcaverna de las chimeneas negras y comenzar su vida independiente. Este postulado de una adquisición tardía de los lípidos es consistente con la presencia de tipos completamente diferentes de lípidos de membrana en arqueobacterias y eubacterias (más los eucariotas) con una fisiología altamente similar en todas las formas de vida en otros aspectos.

Otro asunto sin resolver en la evolución química es el origen de la homoquiralidad, por ejemplo todos los monómeros tienen la misma “mano dominante” (los aminoácidos son zurdos y los ácidos nucleicos y azúcares son diestros). La homoquiralidad es esencial para la formación de ribozimas funcionales (y probablemente también de proteínas). El origen de la homoquiralidad podría explicarse simplemente por una asimetría inicial por casualidad seguida de una descendencia común.
Los trabajos llevados a cabo en 2003 por científicos de Purdue identificaron el aminoácido serina como la probable raíz que provoca la homoquiralidad de las moléculas. La serina produce enlaces particularmente fuertes con los aminoácidos de la misma quiralidad, lo cual resulta en un grupo de ocho moléculas que podrían todas ella ser diestras o zurdas. Esta propiedad se contrapone a la de otros aminoácidos que son capaces de formar enlaces débiles con los aminoácidos de quiralidad opuesta. Aunque el misterio de por qué acabó siendo dominante la serina zurda aún está sin resolver, los resultados sugieren una respuesta a la cuestión de la transmisión quiral: el cómo las moléculas orgánicas de una quiralidad mantienen la dominancia una vez que se establece la asimetría.

Fuente:http://origendelavida123.host56.com/Teor%EDa%20del%20mundo%20de%20hierro-sulfuro%20PAG%2012.html


Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: